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Abstract

Contrastive learning has become a dominant approach in self-supervised visual representation
learning, but efficiently leveraging hard negatives, which are samples closely resembling the
anchor, remains challenging. We introduce SynCo (Synthetic negatives in Contrastive
learning), a novel approach that improves model performance by generating synthetic
hard negatives on the representation space. Building on the MoCo framework, SynCo
introduces six strategies for creating diverse synthetic hard negatives "on-the-fly" with
minimal computational overhead. SynCo achieves faster training and strong representation
learning, surpassing MoCo-v2 by 4+0.4% and MoCHI by +1.0% on ImageNet ILSVRC-2012
linear evaluation. It also transfers more effectively to detection tasks achieving strong results
on PASCAL VOC detection (57.2% AP) and significantly improving over MoCo-v2 on COCO
detection (+1.0% AP) and instance segmentation (40.8% AP™**). Our synthetic hard
negative generation approach significantly enhances visual representations learned through

self-supervised contrastive learning. Code will be made publicly available.

1 Introduction

Contrastive learning has emerged as a prominent approach in self-supervised learning, significantly advancing
representation learning from unlabeled data. This technique, which discriminates between similar and
dissimilar data pairs, has shown premise in visual representation tasks. Seminal works such as SimCLR (Chen
et al.l 2020b) and MoCo (He et al., [2020) established instance discrimination as a pretext task. These methods
generate multiple views of the same data point through augmentation, training the model to minimize the
distance between positive pairs (augmented views of the same instance) while maximizing it for negative

pairs (views of different instances).

Despite its effectiveness, instance discrimination faces challenges.
A key limitation is the need for numerous negative samples, often
leading to increased computational costs. For example, SimCLR
requires large batch sizes for sufficient negatives (Chen et al., |2020b).
While approaches like MoCo address some issues through dynamic
queues and momentum encoders (He et al.| [2020; |Chen et al.| |2020c]),
they still face challenges in selecting and maintaining high-quality
hard negatives. Some variations, like SimCo (Zhang et al 2022a)),
take a different approach by removing both the momentum encoder
and queue in favor of a dual temperature mechanism that modulates
positive and negative sample distances differently in the InfoNCE
loss.

Recent studies have highlighted the importance of carefully crafted
data augmentations in learning robust representations (Chen et al.|
2020b; \Dwibedi et al., [2021; [Tian et al., [2020b; [Wang & Qil, 2022}
Reed et al., 2021} Balestriero et al.l [2023; |Rojas-Gomez et al.| [2024)).
These transformations likely provide more diverse, challenging copies

Figure 1: SynCo generates synthetic
hard negatives for each query example
like [Kalantidis et al.| (2020), but better.
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of images, increasing the difficulty of the self-supervised task. This

self-supervised task is a pretext problem (e.g., predicting image rotations (Gidaris et al., [2018]) or solving
jigsaw puzzles (Noroozi & Favarol 2016))) designed to induce learning of generalizable features without explicit
labels. Moreover, techniques that combine data at the pixel level (Zhang et al.l |2017b} [Yun et al., 2019) or at
the feature level (Verma et al., |2018) have proven effective in helping models learn more resilient features,
leading to improvements in both fully supervised and semi-supervised tasks.

The concept of challenging negative samples has been ex-
plored as a way to enhance contrastive learning models.
These samples, which lie close to the decision boundary,
are crucial for refining the model’s discriminative abili-
ties. Recent work like MoCHI (Kalantidis et al., [2020)
has shown improvements by incorporating harder nega-
tives. However, while the potential of hard negatives is
clear, recent trends in Al have shifted focus toward large-
scale foundation models (Bommasani et al., [2021; |Awais
et al.| [2023]), leaving this promising direction relatively
unexplored. Yet, as Yann LeCun observed, "if Al is a
cake, self-supervised learning is the bulk of the cake". We
argue that revisiting and modernizing self-supervised ap-
proaches, particularly through innovative hard negative
strategies, remains crucial for advancing Al systems.

In this paper, we present SynCo (Synthetic negatives
in Contrastive learning), a novel approach to contrastive
learning that leverages synthetic hard negatives to enhance
the learning process. Building on the foundations of MoCo,
SynCo introduces six distinct strategies for generating syn-
thetic hard negatives, each designed to provide diverse
and challenging contrasts to the model. These strategies
include: interpolated negatives; extrapolated negatives;
mixup negatives; noise-injected negatives; perturbed neg-
atives; and adversarial negatives. By incorporating these
synthetic samples, SynCo aims to push the boundaries
of contrastive learning, improving both the efficiency and
effectiveness of the training process.

A toy illustration of our synthetic hard negative gener-
ation approach is shown in Figure [I] which displays a
t-SNE visualization of random embeddings projected onto
the unit hypersphere. For any given positive query (red
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Figure 2: SynCo extends MoCo (He et al., |2020;
Chen et al., 2020c) by introducing synthetic hard
negatives generated "on-the-fly" from a memory
queue. The process begins with two augmented
views of an image, x, and xy, processed by an
encoder and a momentum encoder, respectively,
producing feature vectors q and k. The memory
queue holds negative samples ni, ns, ..., which
are concatenated with synthetic hard negatives
S1,S2, ... generated using the SynCo strategies.
These combined negatives are used to compute
the affinity matrix, which, together with the posi-
tive pair (query q and key k), contributes to the
InfoNCE loss calculation.

square), we notice that the memory bank (gray marks) predominantly stores easy negatives with relatively
few challenging ones—meaning most negatives are positioned too far away to provide meaningful gradients
for the contrastive loss. Our approach focuses on leveraging only the most challenging negatives (determined
by their similarity scores with the query) to create new synthetic negatives that are both difficult and diverse

(blue triangles).

The main contributions of our work are as follows:

e We introduce SynCo, a contrastive learning framework that improves representation learning by
leveraging synthetic hard negatives. SynCo enhances model discriminative capabilities by generating
challenging negatives "on-the-fly" from a memory queue, using six distinct strategies targeting different
aspects of the feature space. This process improves performance without significant computational
increases, achieving faster training and stronger representation learning.
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e We empirically show improved downstream performance on ImageNet ILSVRC-2012 by incorporating
synthetic hard negatives, demonstrating improvements in both linear evaluation and semi-supervised
learning tasks.

e We show that SynCo learns stronger representations by measuring their transfer learning capabilities
COCO and PASCAL VOC detection, where it outperforms both the supervised baseline and MoCo.

The paper is structured as follows: Section [2| reviews related work; Section [3| explores hard negatives in
contrastive learning; Section [ introduces our synthetic hard negatives method; Section [5] presents experimental
results; Section [6] offers discussion and analysis; and Section [7] concludes the paper.

2 Related Work

2.1 Contrastive Learning

Recent contrastive learning methods focus on instance discrimination as a pretext task, treating each image
as its own class (Chen et al., 2020b; He et al) 2020). The core principle involves bringing an anchor
and a "positive" sample closer in the representation space while pushing the anchor away from "negative"
samples (Khosla et al.| [2021). Positive pairs are typically created through multiple views of each data point
(Tian et al., |2020b; |Caron et al., |2020)), using techniques such as color decomposition (Tian et al.| [2020a)),
random augmentation (Chen et al., [2020b} [He et al., [2020]), image patches (van den Oord et al. [2019), or
student-teacher model representations (Grill et al.,|2020; Caron et al., [2021;|Oquab et al., |2023). The common
training objective, based on InfoNCE (van den Oord et al., 2019) or its variants (Chen et al., [2020b; Dwibedi|
et al., [2021; Tomasev et al., 2022; [Yeh et al., |2022), aims to maximize mutual information (Hjelm et al.,
2019; Bachman et al., [2019), necessitating numerous negative pairs. While some approaches like SimCLR use
large batch sizes (Chen et all, 2020b]) to address this, others like MoCo (He et all, 2020} [Chen et al.l [2020d),
PIRL (Misra & van der Maaten, [2019)), and InstDis (Wu et al., [2018) employ memory structures. Recent
advancements explore strategies such as regularizers (Mitrovic et al. [2020; Bardes et al., 2022a; Zhu et al.,
2022; Bardes et al.,|2022b) or prevent model collapse via redundancy reduction (Zbontar et al., 2021; [Bandara|
et al.,|2023)). Some methods like SimSiam and BYOL eliminate negative samples through asymmetric Siamese
structures or normalization (Grill et al., [2020; |Chen & He, [2020; |Caron et al. 2021} |Oquab et al., [2023).
Approaches such as LA (Zhuang et al.,|2019) and PCL (Li et al., 2021a)) address the false-negative pair issue,
while DCL further improves representation learning by separating the learning of features
and metrics into two distinct phases.

2.2 Hard Negatives

Hard negatives are critical in contrastive learning as they improve the quality of visual representations by
helping to define the representation space more effectively. These challenging yet relevant samples are harder
to distinguish from the anchor point, enabling the model to better differentiate between similar features. The
use of hard negatives involves selecting samples that are similar to positive samples but different enough
to aid in learning distinctive features. Dynamic sampling of hard negatives during training prevents the
model from easily minimizing the loss, enhancing its learning capabilities (He et al.,|2020; |Chen et al., 2020b)).
Various approaches have been proposed to leverage hard negatives effectively. For instance, MoCo (He et al.,
2020) utilizes a dynamic queue and momentum-based encoder updates to maintain fresh and challenging
negatives throughout training. Other methods, such as SimCLR (Chen et al., [2020b)) and InfoMin
2020b), suggest adjusting the difficulty of negative samples by varying data augmentation techniques.
This progressive increase in task difficulty benefits the training process. Building on these ideas, MoCHI
(Kalantidis et al., 2020) has explored integrating hard negative mixing into existing frameworks to further
improve performance. By employing these methods, models become more adept at handling detailed and
complex tasks, ensuring each negative sample significantly contributes to optimizing learning outcomes and
boosting overall model effectiveness.
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3 Preliminaries

In this section, we establish the theoretical foundations of contrastive learning and analyze the critical role of
hard negatives in representation learning.

3.1 Contrastive Learning

Contrastive learning seeks to differentiate between similar and dissimilar data pairs, often treated as a
dictionary look-up where representations are optimized to align positively paired data through contrastive
loss in the representation space . Given an image z, and a distribution of image augmentation
T, we create two augmented views of the same image using the transformation ¢,,t ~ T, i.e., z, = t,(z) and
x = tx(z). Two encoders, f, and fi, namely the query and key encoders, generate the vectors q = f,(z,)
and k = fi(xy), respectively. The learning objective minimizes a contrastive loss using the InfoNCE criterion
(van den Oord et al., 2019):

exp(q' - k/7)

exp(q’ -k/7)+ %:Q exp(q’ -n/7)

L(q,k, Q) = —log

(1)

Here, k is fi’s output from the same augmented image as q, and @ = {ny,ny,...,ng} includes outputs
from different images, representing negative samples of size K. The temperature parameter 7 adjusts scaling
for the £s-normalized vectors q and k. The key encoder fi can be updated in two ways. In the synchronized
update approach, f; is updated synchronously with f,, maintaining identical weights throughout training
(Chen et al. 2020b)). Alternatively, a momentum update scheme can be employed, where f} is updated using
the equation: 0 < m -0 + (1 —m) -6, . Here, 0, and 0, are the parameters of f; and f,
respectively, and m € [0, 1] is the momentum coefficient. This momentum approach allows fi to evolve more
slowly, providing more consistent negative samples over time and potentially stabilizing the learning process.
The memory bank Q can be defined in various ways, such as an external memory of all dataset images
[& van der Maaten), 2019} [Tian et al., [2020a} Wu et al., [2018)), a queue of recent batches (He et al., 2020), or
the current minibatch (Chen et al., 2020b)). Recent analysis (Miles & Mikolajczykl| 2024) has shown that the
projection head’s normalization significantly influences training dynamics and representation quality

The gradient of the contrastive loss in Equation with respect to the query q is given by:

0L(q,k, Q) 1 Z exp(q' - z/7)
_— = —— 1 — . k — n * h 2. = 2
oq T << P) negp n) e P ZjEZ exp(q’ - z;/7) ®

with z; being a member of the set Q U {k}. The positive and negative logits contribute to the loss similarly
to a (K + 1)-way cross-entropy classification, with the key logit representing the query’s latent class (Aroral

et al 2019).

3.2 Understanding Hard Negatives

The effectiveness of contrastive learning approaches hinges critically on the utilization of hard negatives
(Arora et all |2019; [Hadsell et al., 2006; Iscen et al., 2018; Mishchuk et al., 2017; [Wu et al., 2018; Kalantidis|
et al.} 2020). Current approaches face significant challenges in efficiently leveraging these hard negatives.
Sampling from within the same batch necessitates larger batch sizes (Chen et al., 2020bj 2021). Conversely,
maintaining a memory bank containing representations of the entire dataset incurs substantial computational
overhead in keeping the memory up-to-date (Misra & van der Maaten, [2019; [Wu et al.l [2018} [He et all [2020;
|Chen et all [2020c). These limitations underscore the need for more efficient strategies to generate and utilize
hard negatives in contrastive learning frameworks.

Hardness of negatives. The "hardness" of negative samples, defined by their similarity to positive samples
in the representation space, determines how challenging they are for the model to differentiate, directly
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Figure 3: (a) Histogram of the top 1024 matching probabilities p.,, z; € Q for MoCo-v2 on ImageNet-100,
over various epochs. Logits are organized in descending order, and each line indicates the mean matching
probability across all queries [Kalantidis et al| (2020)). (b) Performance comparison of MoCo, MoCo-v2,
MoCHI, and SynCo on ImageNet-100 in terms of accuracy on the proxy task (percentage of queries where the
key is ranked higher than all negatives). (c¢) Performance comparison of SynCo under various configurations
on ImageNet-100 in terms of accuracy on the proxy task.

impacting the effectiveness of the contrastive learning process. Figure [3a] illustrates the evolution of negative
sample hardness during MoCo-v2 training. Initially, the distribution of these probabilities is relatively uniform.
However, as training progresses, a clear trend emerges: fewer negatives contribute significantly to the loss
function. This observation suggests that the model rapidly learns to distinguish most negatives, leaving only
a small subset that remains challenging. Such a phenomenon underscores the importance of maintaining a
diverse pool of hard negatives throughout the training process to sustain effective learning (Kalantidis et al.
2020)).

Difficulty of the proxy task. The difficulty of the proxy task in contrastive learning, typically defined by
the self-supervised objective, significantly influences the quality of learned representations. Figure[3D]compares
the proxy task performance of MoCo and MoCo-v2 on ImageNet-100, measured by the percentage of queries
where the key ranks above all negatives. Notably, MoCo-v2, which employs more aggressive augmentations,
exhibits lower proxy task performance compared to MoCo, indicating a more challenging learning objective.
Paradoxically, this increased difficulty correlates with improved performance on downstream tasks such as
linear classification (Kalantidis et al., [2020)). Additionally, Figure [3c| demonstrates how SynCo’s performance
varies under different configurations, providing insights into the optimal parameter settings for balancing proxy
task difficulty and representation quality. This counterintuitive relationship between proxy task difficulty and
downstream performance suggests that more challenging self-supervised objectives can lead to the learning
of more robust and transferable representations, motivating the development of strategies to dynamically
modulate task difficulty during training.

4 Synthetic Hard Negatives in Contrastive Learning

In this section, we present an approach for generating synthetic hard negatives in the representation space
using six distinct strategies. Building on MoCHI, we propose four additional strategies for generating
synthetic hard negatives to explore complementary aspects of the representation space. A toy example of the
proposed synthetic hard negative generation is presented in Figure [d] We refer to our proposed approach as
SynCo ("Synthetic negatives in Contrastive learning").

4.1 Generating Synthetic Hard Negatives

Let q represent the query image, k its corresponding key, and n € Q denote the negative features from a
memory structure of size K. The loss associated with the query is computed using the logits £(z;) = q ' - z; /T,
which are processed through a softmax function. We define 0= {ni,ns,...,ng} as the ordered set of all
negative features, where £(n;) > ¢(n;) for all ¢« < j, implying that the negative features are sorted based on
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decreasing similarity to the query. The most challenging negatives are selected by truncating the ordered set
O, retaining only the first N < K elements, denoted as O.

Interpolated synthetic negatives (type 1). Building on
MoCHI's (Kalantidis et al., 2020) foundation, our first strategy
creates synthetic negatives through controlled interpolation between 4
samples. This approach aims to generate features that lie in mean-
ingful regions of the representation space between the query and
existing hard negatives. For each query q, we propose to generate
N; synthetic hard negative features by mixing the query q with a
randomly chosen feature from the N hardest negatives in ON. Let
St = {s],s},...,sy, } be the set of synthetic negatives to be gen-
erated. Then a synthetic negative feature si € S* would be given
by:

R A

St=ak-q+(L-a) mi, g € (0,0m) where n; € Q (3) Figure 4: A toy example illustrat-

ing the six types of synthetic hard
negatives generated by SynCo from a
query point and three original negative
points. More in Appendix E

and «y is randomly sampled from a uniform distribution in the range
(0, max)- The resulting synthetic hard negatives are then normalized
and added to the set of negative logits for the query. Interpolation
creates a synthetic embedding that lies between the query and the
negative in the representation space. We set apax = 0.5 to guarantee
that the contribution of the query is always less than that of the negative. This is similar to the hardest
negatives (type 2) of MoCHI (Kalantidis et al., 2020)).

Extrapolated synthetic negatives (type 2). As a natural extension of interpolation, we propose
extrapolation to explore the "opposite" direction in feature space. While this approach operates further from
the decision boundary, we carefully control the exploration through coefficients to maintain an appropriate
level of task difficulty. For each query q, we propose to generate No hard negative features by extrapolating
beyond the query embedding in the direction of the hardest negative features. Similar to the interpolated
method, we use a randomly chosen feature from the N hardest negatives in QV. Let 52 = {s?,82,.. S?VZ)}
be the set of synthetic negatives to be generated. Then a synthetic negative feature sk € S? would be given
by:

Si =n; + /Bkt : (ni - (1)7 /Bk € (L/Bmax) where n; € QN (4)

and S is randomly sampled from a uniform distribution in the range (1, Smax). These synthetic features are
also normalized and used to enhance the negative logits. Extrapolation generates a synthetic embedding that
lies beyond the query embedding in the direction of the hardest negative. We choose fpax = 1.5.

Mixup synthetic negatives (type 3). Following MoCHI’s (Kalantidis et al., 2020 effective strategy of
mixing hard negatives, we incorporate their approach of combining pairs of challenging examples. For each
query q, we propose to generate N3 hard negative features by combining pairs of the N hardest existing
negative features in QV. Let 93 ={s},s3,...,s% N, J be the set of synthetic negatives to be generated. Then a
synthetic negative feature sk € S3 would be given by:

si =7 -n;+ (1 —7,)-n;, v €(0,1) where n;,n; € ovN (5)

and 7y, is randomly sampled from a uniform distribution in the range (0,1). The resulting synthetic hard
negatives are then normalized and added to the set of negative logits for the query. Mixup combines pairs of
the hardest existing negative features to create a synthetic embedding that represents a blend of challenging
cases. This is similar to the hard negatives (type 1) of MoCHI (Kalantidis et al.; |2020]).
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Noise-injected synthetic negatives (type 4). To prevent overfitting to specific negative patterns while
maintaining the essential characteristics of hard negatives, we introduce controlled stochasticity through noise
injection. For each query q, we propose to generate N4 hard negative features by adding Gaussian noise to
the hardest negative features. Using the top N hardest negatives OV, let S* = {s,s3,... s} } be the set of
synthetic negatives to be generated. Then a synthetic negative feature si € S* would be given by:

st =n; +N(0,0°-1) where n; € o (6)

and N(0,0? - T) represents Gaussian noise with standard deviation o (where I is the identity matrix). The
noisy negatives are normalized before being used in the loss calculation. Noise injection adds Gaussian noise
to the hardest negative features, resulting in a synthetic embedding with added randomness.

Perturbed synthetic negatives (type 5). Drawing inspiration from adversarial training (Mehrabi
et al.} 2021), we introduce perturbed synthetic negatives that use gradient-based perturbations with variable
magnitudes. For each query q, we propose to generate N5 hard negative features by perturbing the embeddings
of the hardest negative features. Given the top N hardest negatives OV, let §5 = {s,s3,... ,S?V5} be the set
of synthetic negatives to be generated. Then a synthetic negative feature s € S® would be given by:

s). = n; + - Vp,sim(q,n;) where n; € QV ™)

and sim(-, -) is the similarity function and § controls the perturbation magnitude. The perturbed embeddings
are then normalized and added to the negative logits. Perturbation modifies the embeddings of the hardest
negative features based on the gradient of the similarity function, creating synthetic negatives that are slightly
adjusted to be more challenging for the model. This approach offers greater flexibility than fixed interpolation,
as it generalizes to arbitrary similarity functions and can generate negatives of varying hardness.

Adversarial synthetic negatives (type 6). While similar in concept to type 5, adversarial synthetic
negatives differ fundamentally in their gradient scaling approach. For each query q, we propose to generate
Ng hard negative features by applying adversarial perturbations to the hardest negative features to maximize
their similarity to the query embeddings. Using the top /N hardest negatives oN ,let S8 = {s§,s5,. .. 7s‘?\fﬁ}
be the set of synthetic negatives to be generated. Then a synthetic negative feature s € S would be given
by:

s = n; + 7 - sign(Va,sim(q, n;)) where n; € OV (8)

and 7 controls the perturbation magnitude. The perturbed embeddings are normalized and added to the
negative logits. Adversarial hard negatives apply adversarial perturbations to the hardest negative features,
specifically altering them to maximize their similarity to the query embeddings, thereby producing the most
challenging contrasts. Where type 5 allows variable perturbation sizes, type 6 enforces unit magnitude
through the sign function, creating consistently challenging contrasts.

4.2 Integrating Synthetic Hard Negatives into the Contrastive Loss

The synthetic hard negatives generated are integrated into the contrastive learning process by modifying
the InfoNCE loss. Let S = U?:l S* represent the concatenation of all synthetic hard negatives, where S°
is the set of synthetic negatives generated by the i-th strategy. This combined set of synthetic negatives
augments the original negatives Q, providing a more diverse and challenging set of contrasts for the query.
The modified InfoNCE loss is given by:

exp(q’ - k/7)

exp(q’ - k/7) + %:Q exp(q’ -n/T) + %;sexp(q—r -s/T)’

‘C(qv ka Q7 8) = - IOg

(9)
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Here, 7 is the temperature parameter, Q is the set of original memory-based negatives, and S is the set of
synthetic hard negatives. By incorporating both real and synthetic negatives, the model is exposed to a wider
variety of challenging examples, which encourages learning more robust and generalizable representations.
The overall computational overhead of SynCo is roughly equivalent to increasing the queue/memory by
Z?:1 N,; < K, along with the additional yet negligible cost of generating the synthetic negatives. Since
synthetic negatives are generated "on-the-fly" during training and can be efficiently computed in parallel with
the forward pass, the additional computational cost is marginal compared to the base contrastive learning
framework. Moreover, the memory footprint remains manageable as synthetic negatives do not need to be
stored persistently in the memory bank.

5 Experiments

In this section, we present comprehensive experiments demonstrating SynCo’s effectiveness across multiple
benchmarks, including ImageNet linear evaluation, semi-supervised learning, and transfer learning to object
detection tasks.

5.1 Implementation Details

We pretrain SynCo on ImageNet ILSVRC-2012 (Deng et al., [2009) using a ResNet-50 encoder (He et al.,
2015). Our method builds upon MoCo-v2 (Chen et al., [2020c); thus, it is only fair to compare against
other MoCo-based methods (Chen et al, |2020c; [Li et al., [2021a; [Kalantidis et al., |2020; [Yeh et al. 2022),
which share similar architectures and training setups (see bold entries in Tables [1| to |5} indicating the best
performance among MoCo-based methods). For training, unless stated otherwise, we use K = 65k. For
SynCo, we also have a warm-up of 10 epochs, i.e. for the first epochs we do not synthesize hard negatives.
We set SynCo’s hyperparameters o, d, and 7 to 0.01. For hard negative generation, we use the top N = 1024
hardest negatives, with N7 = Ny = N3 = 256 and Ny = N5 = Ng = 64. For ImageNet linear evaluation, we
train a linear classifier on frozen features for 100 epochs, using a batch size of 256 and a cosine learning rate
schedule. Initial learning rates are set to 30.0 for ImageNet and 10.0 for ImageNet-100. To evaluate transfer
learning, we apply SynCo to object detection tasks. For PASCAL VOC (Everingham et al., [2009)), we fine-tune
a Faster R-CNN (Ren et al., |2016]) on trainval07+12 and test on test2007. For COCO (Lin et al., 2015,
we use a Mask R-CNN (He et al., |2018), fine-tuning on train2017 and evaluating on val2017. We employ
Detectron2 (Wu et al., [2019) and report standard AP metrics, following (He et al., [2020) without additional
hyperparameter tuning. Detailed implementation details along ablations are provided in Appendices [B|and

5.2 Linear Evaluation on ImageNet

We evaluate the SynCo representation by training a linear classifier on top of the frozen features pretrained
on ImageNet (details in Appendix . With 200 epochs pretraining (Table , SynCo obtains 67.9% +
0.16% top-1 accuracy and 88.0% =+ 0.05% top-5 accuracy, showing strong improvements over MoCo-based
methods (+0.4% over MoCo-v2, +1.0% over MoCHI, 40.3% over PCL-v2 and DCL). While MoCHI’s
hard negative generation leads to lower performance than MoCo-v2, our synthetic hard negatives achieve
consistent gains. When training for 800 epochs (Table , SynCo reaches 70.7% top-1 accuracy (+2.0% over
MoCHI) and 89.8% top-5 accuracy. However, at 800 epochs, it does not surpass MoCo-v2, similar to what is
also observed with MoCHI, likely due to an overly hard proxy task (Kalantidis et al. 2020). As illustrated in
Figure [5) we observe that the performance of standard SynCo begins to plateau around epoch 400, suggesting
that continued generation of synthetic negatives may lead to an overly challenging proxy task in later stages
of training. When we implement SynCo* (stopping synthetic negative generation after epoch 400), the model
achieves superior performance, reaching 71.6% top-1 accuracy—a +0.5% improvement over MoCo-v2.

5.3 Semi-supervised Training on ImageNet

We evaluate SynCo in a semi-supervised setting using 1% and 10% of labeled ImageNet data (details in
Appendix [B.3)). Results in Table [3| show that with 1% labels, SynCo achieves 50.8% =+ 0.21% top-1 accuracy
(+25.4% over supervised baseline, +2.6% over MoCo-v2, +2.5% over SimCLR) and 77.5% =+ 0.12% top-5
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Table 1: Top-1 and top-5 accuracies (in %) under
linear evaluation on ImageNet ILSVRC-2012 with
200 epochs of pretraining using ResNet-50. Result
for SynCo are given as max over 3 runs.

Table 2: Top-1 and top-5 accuracies (in %) under lin-
ear evaluation on ImageNet ILSVRC-2012 for models
trained with extended epochs using ResNet-50. Re-
sults for SynCo are based on 1 run.

Method Top-1 Top-5 Method Epochs Top-1 Top-5
Supervised 76.5 - PIRL (Misra & van der Maaten|[2019) 800  63.6 -
PIRL (Misra & van der Maaten|[2019)  63.6 - InfoMin (Tian et al.|[2020b 800  73.0 911
LA (Zhuang et al.[[2019) 60.2 - SimSiam (Chen & He! 800 68.1 -
InfoMin (Tian et al.| 2020b, 70.1 894 SimCLR, (Chen et al. 1000  69.3 -
SimSiam (Chen & He/|2020 68.1 - BYOL (Grill et al.|[2020) 1000 74.3 91.6
MSF (Koohpayegani et al.| [2021) 72.4 - swAvT 800 71.8 -
ReSSL (Zheng et al./|2021 62.9 - SwAV (Caron et al.| 2020 800 75.3 -
SimCLR + DCL (Yeh et al.|[2022) 65.8 - Barlow Twins (Zbontar et al.||2021) 1000  73.2  91.0
SimCLR + DCLW (Yeh et al.|[2022 66.9 - VICReg (Bardes et al.] 20223,! 1000 73.2 91.1
Mo Co-based VICRegL (Bardes et al.||2022b 300 70.4 -
MoCo (He et al.|[2020 60.7 - MoCo-based
PCL-v1 (Li et al.[]2021a 61.5 - MoCo-v2 (Chen et al.] 20200‘ 800 71.1 90.1
MoCo-v2 (Chen et al.[[2020c) 67.5  90.1 MoCHI (Kalantidis et al.|[2020) 800 68.7 2.4 -
PCL-v2 (Li et al.|[2021a) 67.6 10.1 - SynCo (ours) 800 70.7 [0.4 89.8
MoCo-v2 + DCL (Yeh et al.|[2022)  67.6 10.1 - SynCo? (ours) 800 71.6 10.5 90.5
MoCHI (Kalantidis et al.[[2020) 66.9 0.6 - Pa— X - X
SynCo (ours) 68.1 0.0 88.0 Without multi-crop augmentation (by default in SwAV).
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Figure 5: Top-1 accuracy progression on ImageNet
linear evaluation comparing MoCo-v2, SynCo, and
SynCot (stopping synthetic hard negative generation
after epoch 400). Results show accuracy every 100
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¥ We stop generating synthetic negatives at epoch 400.
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Figure 6: Semi-supervised learning performance com-
parison across different training data fractions (1%,
10%, and 100%) on ImageNet. SynCo consistently
outperforms MoCo-v2 and MoCHI across all data
regimes.

accuracy. With 10% labels, it reaches 66.6% £ 0.19% top-1 (4+10.2% over supervised, +0.5% over MoCo-v2,
+1.0% over SimCLR) and 88.0% =+ 0.10% top-5 accuracy. Interestingly, when we stop generating synthetic
negatives after epoch 200, similar to our observation in linear evaluation, performance improves further to
51.2% + 0.23% top-1 and 78.0% =+ 0.14% top-5 with 1% labels, and 67.1% =+ 0.20% top-1 and 88.7% =+ 0.11%
top-5 with 10% labels. We also evaluate SynCo’s performance when fine-tuning with 100% of the labeled
ImageNet data. As shown in Figure [f], SynCo demonstrates consistent improvements over MoCo-based
methods across all training data fractions. With the full dataset (100% labels), SynCo achieves 79.0% top-1
accuracy, outperforming MoCo-v2 (77.0%) by +2.0% and MoCHI (78.0%) by +1.0%. This comprehensive
evaluation across 1%, 10%, and 100% of labeled data demonstrates that SynCo’s synthetic hard negatives
provide robust improvements regardless of the amount of available supervision, with particularly pronounced
benefits in low-data regimes where the quality of learned representations becomes even more critical.
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Table 3:

Semi-supervised learning on ImageNet

ILSVRC-2012 with 1% and 10% training examples

using ResNet-50. Results for SynCo
3 runs.

are averaged over

Table 4: Transfer learning on PASCAL VOC07+12
using R50-C4. We report AP, APs5q, and AP75, which
are standard COCO metrics. Results for SynCo are
averaged over 3 runs.

Method Epochs AP APsq AP;
Top-1 Top-5 p 50 AL75
Method Epochs 2 P Supervised 200 53.5 81.3 58.8
1% 10% 1% 10%  Random init 200 33.8 60.2 33.1
Supervised 95.4 56.4 48.4 80.4 InfoMin (Tian et al.|[2020b 200 57.6 82.7 64.6
InstDis dmm 200 _ _ 399 77.4 SimSiam (Chen & He 2020} 200 57.0 82.4 63.7
SimCLR (Chen et al.| [2020b) 1000 48.3 65.6 75.5 87.8 L YOL F%Mi“ et al. 2%020 300519 81.0 56.5
Barlow Twins (Zbontar et al.|[2021) 1000 55.0 69.7 79.2 89.3 SWAV (Caron et al /2020 800  56.1 82.6 62.7
BYOL (Grill ot al.| 2020 1000 53.2 68.8 78.4 89.0 Barlow Twins (Zbontar et al.|[2021) 1000 56.8 82.6 63.4
SwAV ‘Im 800 53.9 70.2 78.5 89.9 SimCLR (]Chen et al.|[2020b) ‘ 1000 56.3 81.9 62.5
PAWS (Assran et al.|[202] 200 63.8 73.9 - _ Detection-specific
VoCo-vb-based SoCo (Wei et al 100 59.1 83.4 65.6
MoCo-v2 (repr.) 800 48.2 66.1 75.8 87.6 1nsLoc 200 57.9 82.9 64.9
MoCHI (repr.) 800 50.4 65.7 76.2 87.2 DetCo : 200 57.8 826 64.2
SynCo (ours) 800 50.8 66.6 77.5 88.0 ReSim (Xiao et al 2021 200 58.7 83.1 66.3
SynCo? (ours 800 51.267.178.088.7 MoCo-based
Y (ours) MoCo (He et al.|[2020) 200 55.9 81.5 62.6
¥ We stop generating synthetic negatives at epoch 400. MoCo-v2 (Chen et al.||2020c) 200 57.0 82.4 63.6
MoCHI (Kalantidis et al.[[2020) 200 57.582.7 64.4
SynCo (ours) 200 57.2 82.6 63.9

Table 5: Transfer learning on COCO using R50-C4. Both 1x and 2x training schedules are reported. We
report AP, AP5q, and AP75. bb denotes bounding box detection, and msk denotes instance segmentation.
Results for SynCo are averaged over 3 runs.

COCO 1x schedule COCO 2x schedule

Method Epochs
APPP  APEE  APRE AP™Sk APZSk ApmSk APPP APRE APRE ApTsk Apmsk Apmek
Supervised 200 38.2 582 41.2 333 547 352 400 59.9 43.1 347 565  36.9
Random init 200 264 440 278 293 469 308 356 546 382 314 515 335
InfoMin (Tian et al| 200 39.0 585 420 341 552 363 413 612 450 36.0 579 383
SimSiam @mgg@ 200 39.2 593 421 344 560  36.7 - - - - - -
BYOL 1|m 300 - - - - - - 40.3 605 439 351 568 373
SwAV 1W| 800 384 586 413 338 552  35.9 - - - - - -
Barlow Twins (Zbontar et al|[2021) 1000 392 590 425 343 560 365 - - - - - -
SimCLR. (Chen et al.|[2020b 1000 - - 40.3 605 439 351 568 373
Detection-specific

100 404 604 437 349 568 370 411 610 444 356 575  38.0

200 395 59.1 427 345 560 368 414 609 450 359 576 384

200  39.8 59.7 43.0 347 563 367 413 612 450 358 579 382

200 397 59.0 430 346 559 371

MoCo-based

200 385 583 41.6 336 548 356 40.7 60.5 44.1 354 573  37.6

200 389 584 420 342 552 365 40.7 60.5 44.1 356 57.4 371
MoCHI 1 200 392 589 424 343 555 366 - - - - - -
SynCo (ours 200 39.9 59.6 43.3 34.9 56.5 36.9 41.0 60.6 44.8 35.7 574 38.1

5.4 Transferring to Detection

We evaluate the SynCo representation, pretrained for 200 epochs, by applying it to detection tasks (details in
Appendix . Table [4| shows that on PASCAL VOC, SynCo achieves strong results (57.2 AP) comparable
to MoCHI (57.5 AP), while significantly outperforming the supervised baseline (4+3.7 AP). On the more
challenging COCO dataset (Table [5) with 1x schedule, SynCo shows consistent improvements over the
supervised baseline (APbb +1.7, AP™sk +1.6) and MoCo-v2 (APbb +1.0, AP™sk +0.8). SynCo achieves
competitive performance with detection-specific methods, showing comparable results to DetCo (39.8 vs 39.9
AP®) and InsLoc (39.5 vs 39.9 AP®), despite using a general contrastive learning framework. Additional
results are provided in Appendix [C1}
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Figure 8: Distribution of the ratio between inter-class
and intra-class distances for MoCo-based methods.
Higher values indicate better class separation. For
clarity, we only show MoCo-v2 (800 epochs), PCL-v2
(200 epochs), and SynCo (800 epochs).

6 Discussion

This section examines how synthetic negatives affect proxy task difficulty and shape representation space
utilization.

6.1 Is the Proxy Task More Difficult?

Figure depicts the proxy task performance for different configurations of SynCo. We observe that
incorporating synthetic negatives leads to faster learning and improved performance. Each type of synthetic
negative accelerates learning compared to the MoCo-v2 baseline, with the full SynCo configuration showing
the most significant improvement (see Table and the lowest final proxy task performance. This indicates
that SynCo presents the most challenging proxy task. This is evidenced by max ¢(s}) > max {(n;), where
st € S' are synthetic negatives and n; € Qy are original negatives. Through SynCo, we modulate proxy
task difficulty via synthetic negatives, pushing the model to learn more robust features.

6.2 Evaluating the Usage of the Representation Space

To assess learned representations, we employ alignment and uniformity metrics (Wang & Isolal [2020)) (details in
Appendix. These metrics provide insights into representation space utilization, with alignment quantifying
the grouping of similar samples and uniformity measuring representation spread across the hypersphere.
Figure [7] presents results for various MoCo-based methods. Our findings demonstrate that SynCo significantly
enhances the uniformity of representations compared to MoCo-v2 and MoCHI, demonstrating improved
utilization of the representation space in the proxy task. Furthermore, the incorporation of synthetic negatives
(types 1 to 6) leads to improved alignment. These results suggest that SynCo’s approach to synthetic negative
generation and contrastive learning yields stronger and more well-distributed feature representations.

6.3 Class Concentration Analysis

To quantify the structure of the learned latent space, we examine the relationship between within-class
and between-class distances. Figure [§] shows the distribution of ratios between inter-class and intra-class
{y-distances for representations learned by various MoCo-based contrastive methods on the ImageNet
validation set. A higher mean ratio indicates that representations are better concentrated within classes while
maintaining greater separation between classes, reflecting improved linear separability (aligned with Fisher’s

11
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linear discriminant analysis principles (Friedman et al.| [2009))). After 800 training epochs, SynCo achieves a
mean ratio of 1.384, significantly surpassing MoCo-v2 (1.146) and PCL-v2 (0.988). Additional results are

provided in Appendix

7 Conclusion

This paper introduces SynCo, a novel contrastive learning approach leveraging synthetic hard negatives to
enhance visual representation learning. By generating diverse and challenging negatives "on-the-fly", SynCo
overcomes the limitations of maintaining an effective hard negative pool throughout training. Experiments
demonstrate that SynCo accelerates learning and produces more robust, transferable representations.

While our experiments primarily employed the MoCo framework for the lower batch size requirements, the
proposed hard negative generation strategies are general and applicable to any contrastive learning method
that benefits from hard negatives, such as SimCLR (Chen et al.l 2020b)), CPC (van den Oord et al., [2019),
PIRL (Misra & van der Maaten, 2019)), and other (Wang & Qil, [2022; Dwibedi et al., 2021; Tian et al.,
2021). These methods, which utilize the InfoNCE loss function (or its variants (Chen et al.| [2020b; Dwibedi
et al.| 2021))) and instance discrimination as the pretext task, gain from SynCo’s enhanced hard negative
generation. While more complex methods (Caron et al., |2020; |Grill et al., |2020)) use additional tricks to
refine representation learning, SynCo shows strong improvements within MoCo-v2’s simpler framework. By
introducing synthetic hard negatives, these methods access more challenging, informative contrasts, potentially
improving feature representations. Furthermore, SynCo’s applicability extends beyond visual representation
learning, offering benefits in domains such as natural language processing, audio processing, and other areas
where contrastive learning is relevant.
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A Algorithm
Algorithm [I] provides the pseudo-code of SynCo.

B Implementation Details

We implement SynCo in PyTorch following the implementation of MOC(ﬂ Specifically, we follow the same
setting as MoCo-v2.

B.1 Pretraining

Datasets. We evaluate the proposed method on ImageNet ILSVRC—201f| (Deng et a1.|, 2009), which
includes 1000 classes and is commonly used in previous self-supervised methods (Chen et al., 2020bt [Chen &
[2020; [Zbontar et al. [2021; [Zhang et al.,2022b). The dataset consists of 1.28 million training images
and 50,000 validation images. We also conduct ablation studies on ImageNet-100 (Khosla et al., 2021), a
subset of 100 classes derived from ImageNet, with 126,689 training images and 5,000 validation images. Both

1 Available at: https://github.com/facebookresearch/mocol
2Available at: https://www.image-net.org/
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Algorithm 1 Pseudocode of SynCo in a PyTorch-like style.

f_q, f_k: encoder networks for query and key
queue: dictionary as a queue of K keys (CxK)

m: momentum

t: temperature

hard_neg_functions: list of functions to generate
synthetic negatives (type 1 to 6)

HHHEHE R

f_k.params = f_q.params # initialize

for x in loader: # load a minibatch x with N samples
x_q = aug(x) # a randomly augmented version

X = aug(x) # another randomly augmented version

=

f_q.forward(x_q) # queries: NxC
f_k.forward(x_k) # keys: NxC
k.detach() # no gradient to keys

[aage
oo

# positive logits: Nx1
1_pos = bmm(q.view(N,1,C), k.view(N,C,1))

# negative logits: NxK
1_neg = mm(q.view(N,C), queue.view(C,K))

# find indices of the top-(N_hard) hard negatives
idxs_hard = topk(l_neg, k=N_hard)

# generate hard negatives

for func in hard_neg_functions:
# generate hard negatives of type i
s_neg = func(q, queue, idxs_hard)
# compute logits for synthetic negatives
1_syn = bmm(q.view(N,C), s_neg.view(N,C))
# append hard negatives logits
1_neg = cat([l_neg, 1_syn], dim=1)

# logits: Nx(1+K+N_hard)
logits = cat([l_pos, 1l_neg], dim=1)

# contrastive loss, positives are the 0O-th
labels = zeros(len(logits))
loss = CrossEntropyLoss(logits/t, labels)

# SGD update: query network
loss.backward()
update (f_q.params)

# momentum update: key network
f_k.params = m*f_k.params+(1-m)*f_q.params

# update dictionary
enqueue (queue, k) # enqueue the current minibatch
dequeue (queue) # dequeue the earliest minibatch

bmm: batch matrix multiplication; mm: matrix multiplication; cat: concatenation; topk: returns the indices of the top-k values.

datasets are well-balanced in class distribution, and the images contain iconic views of objects, as is common
in vision tasks (He et al., |2015; Zbontar et al. [2021).

Augmentation. Each input image is transformed twice to generate two different views. For SynCo, we use
the same augmentation as used in (Chen et al., [2020c|) and (Kalantidis et al. [2020) for a fair comparison. We
transform each input image with two sampled augmentations to produce two distorted versions of the input.
The augmentation pipeline consists of random cropping, resizing to 224 x 224, randomly flipping the images
horizontally, applying color distortion, optionally converting to grayscale, adding Gaussian blurring.

Architecture. Both the encoder f; and fj consist of a backbone and a projection head. The encoder fj is
updated by the moving average of f,. As our base encoder, we adopt ResNet-50 (2048 output units). The
projection head is a 2-layer MLP, following (Chen et all, 2020c): the hidden layers of the MLP are 2048-d
and are with ReLU (Nair & Hinton, 2010); the output layer of the MLP is 128-d, without ReLU.

Optimization. We follow the same setting as (Chen et al.l 2020c). We utilize the SGD optimizer
with a base learning rate of 0.03 (= 0.03 x batch_ size/256), where we scale the learning rate with
the batch size as in (Chen et al., 2020b), and a weight decay of 10=%. The training schedule begins with a
warm-up period during the first 10 epochs in which the learning rate linearly increases from 0 to the base
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learning rate. Following this, the learning rate gradually decreases to zero following a cosine decay schedule
without restarts. The batch size for ImageNet is set to 256 distributed over 4 NVIDIA L40 GPUs. The total
training duration is set to 200/800 epochs for ImageNet. For pretraining, SynCo takes approximately 43
hours (1.8 days) and 8 kWh of power for 100 epochs.

Hyperparameters. We empirically set SynCo’s hyperparameters to ¢ = 0.01, 6 = 0.01, and n = 0.01.
A thorough analysis of these hyperparameters revealed no significant difference in performance when these
values are varied within reasonable bounds (also see Appendix @, indicating that our method is robust to
a range of practical settings. For hard negative generation, we select the top N = 1024 hardest negatives
and set N1 = Ny = N3 = 256 and Ny = N5 = Ng = 64 to maintain a balanced total number of generated
hard negatives. A detailed analysis of the choice of N;, i =1,...,6 is provided in Appendix [D] We tested
various similarity functions, including cosine similarity, Euclidean, and Mahalanobis distances, for generating
gradient-based synthetic hard negatives. Our results revealed no significant differences in model performance
across these similarity measures. Therefore, we opted to use the dot product similarity function, which
simplifies computation and aligns with the InfoNCE loss used in SynCo’s contrastive learning framework.

For detailed configuration of SynCo pretraining, including architecture and optimization parameters, see
Table

Table 6: Architecture and optimization hyperparameters used for SynCo pretraining.

Parameter Value
Architecture
Backbone ResNet-50
Projection head 2-layer MLP
Projection head activation ReLU
Optimization
Optimizer SGD
Momentum 0.9
Base learning rate 0.03
Weight decay 1074
Warm-up 10 epochs
Batch size 256
Training epochs 200/800 epochs
Training time ~43 hours/100 epochs
MoCo
Queue size K 65536
Momentum m 0.999
Temperature 7 0.2
SynCo
Hardest negatives N 1024

Synthetic N;, 1 =1,2,3 256
Synthetic N;, 1 =4,5,6 64
Hyperparameters o, d,n 0.01

B.2 Linear Evaluation

We follow the linear evaluation protocol of (He et al.| [2020) and as in (Kornblith et al., [2019; [Kolesnikov
et al.l 20195 |Chen et al. |2020b; |Grill et al., [2020; van den Oord et al., 2019)), which consists in training a
linear classifier on top of the frozen representation, i.e., without updating the network parameters nor the
batch statistics. At training time, we apply spatial augmentations, i.e., random crops with resize to 224 x 224
pixels, and random flips. At test time, images are resized to 256 pixels along the shorter side using bicubic
resampling, after which a 224 x 224 center crop is applied. In both cases, we normalize the color channels by
subtracting the average color and dividing by the standard deviation, after applying the augmentations. We
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optimize the cross-entropy loss using SGD with Nesterov momentum over 100 epochs, using a batch size
of 256 and a momentum of 0.9. We do not use any regularization methods such as weight decay, gradient
clipping (Cubuk et all 2019), tclip (Bachman et al., |2019), or logits regularization. We use a learning rate of
30.0 for ImageNet ILSVRC-2012 and 10.0 for ImageNet-100. We train using 4 NVIDIA L40 GPUs.

B.3 Semi-supervised Training

We follow the semi-supervised learning protocol of (Chen et al., |2020b; [Kornblith et al., 2019} |Zhai et al.l [2020;
Grill et al.| 2020). We first initialize the network with the parameters of the pretrained representation, and
fine-tune it with a subset of ImageNet ILSVRC-2012 labels. At training time, we apply spatial augmentations,
i.e., random crops with resize to 224x 224 pixels and random flips. At test time, images are resized to 256
pixels along the shorter side using bicubic resampling, after which a 224 x 224 center crop is applied. In both
cases, we normalize the color channels by subtracting the average color and dividing by the standard deviation
(computed on ImageNet), after applying the augmentations. We optimize the cross-entropy loss using SGD
with Nesterov momentum. We used a batch size of 1024, a momentum of 0.9. We do not use any regularization
methods such as weight decay, gradient clipping (Cubuk et al., 2019)), tclip (Bachman et al., |2019)), or logits
rescaling. Similar to (Caron et al., [2020]), we sweep over the learning rates {0.01,0.02,0.05,0.1,0.005} and
the number of epochs {30,60}. We train using 4 NVIDIA L40 GPUs.

B.4 Object Detection

We follow the object detection protocol of (He et al., [2020} |(Chen et al., 2020c). We first initialize the network
with the parameters of the pretrained representation, and fine-tune it on PASCAL VOC (Everingham et al.,
2009)E| and COCO (Lin et al.l 2015)E| datasets. During training, we apply spatial augmentations, specifically
random resizing and random horizontal flipping. During testing, images are resized to a fixed size of 800
pixels along the shorter side. The R50-C4 backbones, similar to those used in Detectron2 (Wu et al., [2019)),
conclude at the conv4 stage. Subsequently, the box prediction head is composed of the conv5 stage, which
includes global pooling, followed by a BN layer. We train using 8 NVIDIA RTX 6000 GPUs.

PASCAL VOC object detection. We use a Faster R-CNN (Ren et all |2016|) with the SGD optimizer at
a base learning rate of 0.02, a momentum of 0.1, and a weight decay of 0.0001, and a batch size of 16. The
model is trained for 24,000 iterations using a step learning rate scheduler, where the learning rate is reduced
at 18,000 and 22,000 iterations. Images are scaled to 480 x 800 pixels during training and resized to 800
pixels on the longer side for inference.

COCO object detection. We use a Mask R-CNN (He et al., [2018) with the SGD optimizer at a base
learning rate of 0.02, a momentum of 0.1, and a weight decay of 0.0001, and a batch size of 16. For the 1x
schedule, the model trains for 90,000 iterations with learning rate reductions at 60,000 and 80,000 iterations.
For the 2x schedule, it trains for 180,000 iterations with learning rate reductions at 120,000 and 160,000
iterations. A warm-up period is applied for the first 100 iterations. Images are resized to 640 x 800 pixels
during training and normalized to 800 pixels on the longer side for inference.

B.5 Alignment and Uniformity

We follow the protocol of (Kalantidis et al., |2020) but training the network 100 epochs on ImageNet-100.
We calculate the alignment and uniformity based on (Wang & Isolal [2020). The alignment loss Laiign and
uniformity loss Luniform are computed as follows:

Latign (%, ¥) = Ety)mpanea [1fa(x) = fr(y)ll2] (10)

Luniform (X) = 10g Ex y~pyara [eXp(—tqu (x) = fr (Y)”%)] (11)

3Available at https://host.robots.ox.ac.uk/pascal/V0OC/.
4 Available at https://cocodataset.org/.
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where x and y is a pair of positive images, « is a hyperparameter typically set to 2, and ¢ controls the
sharpness of the distribution, also set to 2. Here, pqata represents the empirical distribution of the data, from
which pairs of embeddings (x,y) are sampled. We implement these losses in PyTorch following the original
implementatio

B.6 ImageNet-100 Subsets

The list of classes from ImageNet—lOdﬂ is randomly sampled from the original ImageNet ILSVRC-2012 dataset
and is the same as that used in (Tian et al.,|2020a). The list is shown in Table

Table 7: The list of classes from ImageNet-100, randomly sampled from ImageNet ILSVRC-2012.

ImageNet-100
n02869837 n01749939 n02488291 n02107142n13037406 n02091831 n04517823 n04589890 n03062245 n01773797
n01735189 n07831146 n07753275 n03085013 n04485082 n02105505 n01983481 n02788148 n03530642 n04435653
n02086910 n02859443 n13040303 n03594734 n02085620 n02099849 n01558993 n04493381 n02109047 n04111531
n02877765n04429376 n02009229 n01978455 n02106550 n01820546 n01692333 n07714571 n02974003 n02114855
n03785016 n03764736 n03775546 n02087046 n07836838 n04099969 n04592741 n03891251 n02701002 n03379051
n02259212n07715103 n03947888 n04026417 n02326432n03637318 n01980166 n02113799 n02086240 n03903868
n02483362 104127249 n02089973 n03017168 n02093428 n02804414 n02396427 n04418357 n02172182n01729322
n02113978 n03787032 n02089867 n02119022 n03777754 n04238763 n02231487 n03032252n02138441 n02104029
n03837869 n03494278 n04136333 n03794056 n03492542 n02018207 n04067472 n03930630 n03584829 n02123045
n04229816 n02100583 n03642806 n04336792 n03259280 n02116738 n02108089 n03424325 n01855672 n02090622

B.7 Image Augmentations

During self-supervised training, SynCo uses the same augmentation as (Chen et al.,|2020c|). The augmentation
parameters are detailed in Table

Table 8: Parameters used to generate image augmentations.

Parameter MoCo-v2
T
Random crop probability 1.0
Horizontal flip probability 0.5
Vertical flip probability 0.8
Brightness adjustment max intensity 0.4
Contrast adjustment max intensity 0.4
Saturation adjustment max intensity 0.2
Hue adjustment max intensity 0.1
Color dropping probability 0.2
Gaussian blurring probability 0.5
Solarization probability 0.0

C Additional Results

In this section we present extended results starting with object detection on PASCAL VOC, where SynCo
demonstrates faster training and matches MoCo-v2’s performance at 800 epochs. We then analyze the
representations learned by SynCo through multiple perspectives. We examine the model’s feature space
using class concentration metrics, dimensionality reduction techniques (t-SNE, UMAP), and nearest neighbor
analysis to understand its semantic organization. We investigate the robustness of learned representations
under distribution shifts (ImageNet variants), corruptions, and adversarial attacks to assess their generalization
capabilities. Through GradCAM visualizations, we also provide insights into which image regions contribute

5Available at: https://github.com/Ssnl/align_uniform.
6 Available at: https://github.com/HobbitLong/CMC/blob/master/imagenet100.txt.
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most to the model’s feature extraction. These analyses collectively demonstrate SynCo’s ability to learn
discriminative and robust visual representations.

C.1 Transferring to Detection

We evaluate the SynCo representation using a pretrained ResNet-50 model trained for 800 epochs on VOC
dataset. The results are shown in Table [9] SynCo demonstrates faster training, achieving better results at
lower epochs compared to MoCo-v2. At 200 epochs, SynCo already surpasses MoCo-v2 in terms of APsy and
AP;5. However, when training is extended to 800 epochs, MoCo-v2 and SynCo perform on par, with both
methods reaching similar performance.

Table 9: Results for object detection on PASCAL VOC. The values in bold indicate the maximum of each
column.

Method Epochs AP APsg APr
Supervised 90 53.5 81.3  58.8
MoCo (He et al. [2020) 200 55.9 81.5 62.6

MoCo-v2 (Chen et al.l 2020c) 200 57.0 824  63.6
MoCo-v2 (Chen et al., [2020c) 800 57.4 825 64.0
SynCo (ours) 200 57.2 82.6 639
SynCo (ours) 800 57.4 82.8 64.0

C.2 Class Concentration Analysis

To quantify the overall structure of the learned latent space, we examine the relationship between within-class
and between-class distances. Figure [ compares the distribution of ratios between inter-class and intra-class
{5-distances of representations learned by different MoCo-based contrastive learning methods on the ImageNet
validation set. A higher mean ratio indicates that the representations are better concentrated within their
corresponding classes while maintaining better separation between different classes, suggesting improved
linear separability (following Fisher’s linear discriminant analysis principles (Friedman et al. [2009)).

Table 10: Statistical summary of the ratio between inter-class and intra-class distances for different MoCo-
based methods. 1 indicates higher is better, | indicates lower is better. Higher mean indicates better class
separation while lower standard deviation suggests more consistent feature learning across different classes.

Method Epochs Mean T Median 1 Std |
Supervised 90 1.381 1.369 0.110
MoCo (He et al. [2020) 200 1.012 0.999 0.115
MoCo-v2 (Chen et al.| [2020c) 200 1.061 0.971 0.358
MoCo-v2 (Chen et al.| [2020c]) 800 1.146 1.043 0.375
PCL-v1 (Li et al [2021al) 200 0.930 0.869 0.312
PCL-v2 (Li et al [2021al) 200 0.988 0.866 0.419
SynCo (ours) 200 1.104 1.001 0.383
SynCo (ours) 800 1.384 1.282 0.361

As shown in Table SynCo trained for 800 epochs achieves the highest mean ratio (1.384) among all
MoCo-based methods, approaching and slightly surpassing the supervised baseline (1.381). A higher mean
ratio indicates better class separability, which is crucial for downstream classification tasks. This superior
performance can be attributed to SynCo’s synthetic hard negative generation strategies, which help create
more discriminative feature representations.

The standard deviation of the ratio distribution provides insight into the consistency of learned features
across different classes. Lower standard deviation suggests more uniform feature learning across all classes.
While the supervised baseline achieves the lowest standard deviation (0.110), among MoCo-based methods,
MoCo shows comparable consistency (0.115).
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Notably, both SynCo variants (200 and 800 epochs)
consistently outperform their MoCo-v2 counterparts
at equivalent training epochs in terms of mean ratio
(1.104 vs 1.061 at 200 epochs, and 1.384 vs 1.146 at
800 epochs), demonstrating the effectiveness of syn-
thetic hard negatives in learning more discriminative
features. The improvement in class concentration

SynCo (200ep)
SynCo (800ep)
MoCo-v2 (200ep)
MoCo-v2 (800ep)
PCL-v2 (200ep)

INIRNRNRl

g
metrics aligns with SynCo’s superior performance on 0-5

downstream tasks, particularly in scenarios requiring

fine-grained discrimination between similar classes. 0.0 0 4

By focusing exclusively on methods built upon the Ratio of between-class to within-class distance

MoCo framework, this comparison ensures a fair
evaluation of SynCo’s contributions to contrastive Figure 9: Distribution of the ratio between inter-

learning. class and intra-class distances for different MoCo-based

methods. Higher values indicate better class separa-
C.3 Robustness tion. We show MoCo (200 epochs) (He et al., [2020)),
and Out-of-Distribution Evaluation MoCo-v2 ((Chen et al., |2020c) (200 and 800 epochs),

PCL-v1 and PCL-v2 (Li et all 2021al) (200 epochs),
We evaluate the robustness and out-of-distribution and SynCo (200 and 800 epochs).
(OOD) generalization capabilities of SynCo represen-
tations. For robustness evaluation, we employ four
datasets: ImageNet-v2 (Recht et al., |2019), which
comprises three sets of 10,000 images (matched frequency, threshold 0.7, and top images); ImageNet-
A (Hendrycks et al.l |2021b)), which contains naturally adversarial examples; ImageNet-P (Hendrycks &
Dietterich} 2019), which evaluates prediction stability under perturbations; and ImageNet-C (Hendrycks &
Dietterichl [2019), which consists of 15 synthetically generated corruptions (e.g., blur, noise, weather);

For OOD generalization, we examine performance on five datasets: ImageNet-Sketch (Wang et al.| [2019),
containing 50,000 black-and-white sketches; ImageNet-R (Hendrycks et all 2021al), consisting of 30,000
artistic renditions; ImageNet-O (Hendrycks et al.l |2021b), designed for anomaly detection (evaluated using
FPRY5); ImageNet-Watermark (Li et al. 2023, testing robustness to watermark perturbations.

On all datasets, we evaluate the representations of a standard ResNet-50 encoder under a linear evaluation
protocol, where we freeze the pretrained representations and train a linear classifier using the labeled ImageNet
training set. The test evaluation is performed zero-shot, i.e., no training is done on the above datasets.

Table 11: Top-1 accuracy (in %) across different ImageNet variants using ResNet-50 as the backbone, except
ImageNet-O (IN-O) where we evaluate using FPR95. IN: ImageNet; MF/T07/TI: ImageNet-v2 variants; IN-C:
ImageNet-C; IN-A: ImageNet-A; IN-S: ImageNet-Sketch; IN-R: ImageNet-R; IN-W: ImageNet-Watermark.
Results for SimCLR, are from (Tomasev et al. [2022). We reproduce MoCo and MoCo-v2 linear probing since
no checkpoints are available (thus results may differ from original implementation).

Method Epochs Robustness Out-Of-Distribution
IN MF T-07 TI IN-C IN-A IN-W IN-S IN-R IN-O
Supervised 90 76.1 63.1 723 77.6 39.8 0.0 48.7  24.1 36.2 814
SimCLR (Chen et al.| |2020b) 1000 69.3 53.2 61.7 68.0 31.1 - - 3.9 18.3 -
MoCo (He et al.|[2020) 200 60.9 459 53.8 60.4 33.8 2.5 38.5 10.2 18.2 85.9

MoCo-v2 (Chen et al.| 2020c) 200 67.8 548 63.0 69.0 514 2.8 442 175 278 819
MoCo-v2 (Chen et al.||2020c) 800 71.1 585 66.6 73.0 55.8 4.1 35.0 192 297  79.0
SynCo (ours) 200 68.1 549 63.7 69.8 51.6 3.2 42.8 16.5 26.7 825
SynCo (ours) 800 70.7 581 66.4 725 55.9 4.2 416 19.2 287  79.5

As shown in Table SynCo demonstrates strong robustness across various distribution shifts, outperforming
MoCo and SimCLR in most robustness benchmarks. At 200 epochs, SynCo achieves better results than MoCo
and is competitive with MoCo-v2, particularly on ImageNet-C (51.6% top-1 accuracy) and ImageNet-A (3.2%
top-1 accuracy). At 800 epochs, SynCo achieves comparable performance to MoCo-v2 across robustness
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Table 12: Top-1 accuracy (%) for ImageNet-C corruption results using ResNet-50: noise (gaussian, shot,
impulse), blur (defocus, glass, motion, zoom), weather (frost, snow, fog, brightness), digital (contrast, elastic,
pixelate, jpeg). We reproduce MoCo and MoCo-v2 linear probing since no checkpoints are available.

i - i ioits
Method Epochs Noise Blur Weather Digital

Gauss Shot Imp Defoc Glass Mot Zoom Frost Snow Fog Bright Cont Elas Pix JPEG
Supervised 90 329 305 286 353 253 36.2 36.2 349 301 429  65.0 35.7 429 456  53.0
SimCLR 1000 29.1 263 17.3 221 14.7 200 186 27.2 333 462 59.7 53.9 31.0 242 439
MoCo (He et al.|[2020) 200 299 265 102  26.1 243 33.0 207 324 252 281 522 47.0 433 35.8 403

MoCo-v2 (Chen et al.||2020c) 200 51.8  50.2 36.3 482 44.1 504  36.1 50.2 404 448  63.7 58.1 58.1 581 529
MoCo-v2 (Chen et al.|[2020c) 800 56.2  54.8 399 52.6 48.7 581  40.1 539 456 514 671 62.1 619 61.7 56.7
SynCo (ours) 200 523 509 348 488 447 513 36.5 49.7 399 440 63.7 58.3 583 583 528
SynCo (ours) 800 57.5  56.3 40.9 53.1 49.7  57.3 416 53.6 449 498  66.8 62.0 61.9 61.0 558

and OOD benchmarks, while surpassing SimCLR on OOD datasets such as ImageNet-Sketch (19.2% top-1
accuracy) and ImageNet-R (28.7% top-1 accuracy). Table [12| further highlights SynCo’s strong performance
across all corruption categories in ImageNet-C, including noise, blur, weather, and digital corruptions. SynCo
consistently outperforms MoCo across these categories, demonstrating its ability to maintain high accuracy
under a wide range of corruptions. At 800 epochs, SynCo achieves similar performance to MoCo-v2.

C.4 Adversarial Robustness

We evaluate the adversarial robustness of SynCo by testing against a comprehensive suite of adversarial
attacks. Following standard practices in adversarial machine learning (Madry et al.l 2018), we assess model
performance against both white-box and black-box attacks on the ImageNet validation set. All attacks are
implemented using the torchattacks library (Kim), 2020)ﬂ with evaluations conducted using a ResNet-50
backbone.

Our evaluation includes gradient-based attacks: Fast Gradient Sign Method (FGSM) (Goodfellow et al.| 2014)
with £ = 8/255, and Projected Gradient Descent (PGD) (Madry et all [2018]) with ¢ = 8/255, o = 2/255, and
10 steps. We also evaluate against optimization-based attacks: Carlini & Wagner (C&W) (Carlini & Wagner,
2017)) with confidence x = 0, 50 optimization steps, learning rate of 0.01, and initial constant ¢ = 10,
Additionally, we test black-box attacks, including score-based and decision-based methods: Square Attack
(Andriushchenko et al.| [2020]) with ¢, norm and 1,000 queries, and Auto Attack (Croce & Hein) [2020) using
{5 norm. Furthermore, we include advanced perturbation methods: Translation-Invariant FGSM (TIFGSM)
(Dong et al., 2019) with e = 8/255, a = 2/255, and 10 steps, and One-Pixel Attack (Su et al 2019) limited
to single-pixel modifications with 10 steps.

Table 13: Top-1 accuracy (in %) under various adversarial attacks on ImageNet validation set using ResNet-50.
We reproduce MoCo and MoCo-v2 linear probing since no checkpoints are available.

Method Epochs Clean FGSM PGD C&W Square Auto TIFGSM OnePixel
Supervised 90 76.15 2347  0.28 16.19  11.52 0.21 4.37 73.79
MoCo (He et al.||[2020) 200 60.86 15.75  0.08  9.40 9.98 0.05 7.33 57.40
MoCo-v2 (Chen et al.||2020c) 200 67.77 2375 032 17.08 13.94 0.23 5.36 65.16
MoCo-v2 (Chen et al.||2020c) 800 71.06  30.79 0.53 2299 1889 0.34 8.29 68.69
SynCo (ours) 200 68.13 24.70 0.33 17.87 14.73 0.24 6.24 65.71
SynCo (ours) 800 70.72  31.67 0.48 2290 18.66 0.34 8.00 68.45

Results in Table highlight SynCo’s strong adversarial robustness across a diverse set of attacks. At
200 epochs, SynCo outperforms MoCo and MoCo-v2 on clean accuracy (68.13%) and demonstrates higher
resilience against FGSM (24.70%) and PGD (0.33%) attacks, reflecting its ability to withstand gradient-based
perturbations better. Furthermore, SynCo achieves comparable results to MoCo-v2 on optimization-based
attacks like C&W (17.87%) and Square Attack (14.73%), while surpassing MoCo in all categories. At

7Available at: https://github.com/Harry24k/adversarial-attacks-pytorch.
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800 epochs, SynCo continues to exhibit competitive performance, achieving parity with MoCo-v2 on clean
accuracy (70.72% vs. 71.06%) and similar or slightly better robustness to most attacks.

C.5 Class Average t-SNE Visualization

We examine the distribution of ImageNet concepts in SynCo’s feature space. For each ImageNet class, we
compute the average feature vector from its validation images. We apply t-SNE (van der Maaten & Hinton)
2008) with a perplexity of 30 and learning rate of 200 for 1000 iterations. Figure [22| and Figure [23| reveal that
SynCo learns meaningful semantic structures: similar animal species naturally cluster together, e.g., spider,
barn spider, garden spider, tarantula, wolf spider, and black widow cluster together (bottom right), while
digital clock, digital watch, and dial telephone form another coherent group (right mid). The visualization
at 800 epochs (Figure shows coherent clusters as well, where e.g., Yorkshire terrier, silky terrier, and
Australian terrier cluster together (right mid). We also perform the same analysis for MoCo (He et al.,
2020)) with 200 epochs of pretraining (Figure and MoCo-v2 (Chen et al., [2020c) with both 200 epochs
(Figure and 800 epochs (Figure of pretraining for comparison. Additionally, we include the results
from a supervised model trained on ImageNet for comparison (Figure .

C.6 GradCAM Visualization

To gain deeper insights into the regions SynCo focuses on during feature extraction, we utilize GradCAM
(Selvaraju et al., 2019) to visualize the model’s attention. Attention maps are generated from the final
residual block of the ResNet-50 backbone. Figure [10] presents GradCAM visualizations for various ImageNet
validation images, comparing SynCo pretrained for 200 epochs and 800 epochs alongside supervised models.
The heatmaps reveal that SynCo effectively attends to discriminative object parts and regions, demonstrating
its ability to learn meaningful semantic features without supervision.

C.7 UMAP Visualization

To better understand the feature representations learned by SynCo, we perform Uniform Manifold Approxi-
mation and Projection (UMAP) (McInnes et al., 2020)) on feature embeddings extracted from the validation
set. UMAP reduces high-dimensional data to two dimensions, allowing for a qualitative evaluation of class
separability. We considered three configurations based on the number of classes: the first 40, the first 100,
and all 1000 classes from ImageNet. Figures [I1] and [I2]illustrate the results for models pretrained for 200
and 800 epochs, respectively. We also present UMAP visualizations for MoCo with 200 epochs of pretraining
(Figure and MoCo-v2 with both 200 epochs (Figure and 800 epochs (Figure of pretraining for
comparison. For comparison, we also include UMAP visualizations of features from a supervised model
trained on ImageNet (Figure [16]).

C.8 Nearest Neighbor Retrieval

To analyze the semantic consistency of SynCo’s learned representations, we perform nearest neighbor retrieval
using the following process. We extract 2048-dimensional feature vectors from both ImageNet training and
validation sets using the pretrained ResNet-50 backbone with the classification layer removed, applying
average pooling to the final convolutional outputs. Using these embeddings, we randomly select query images
from the validation set and find their nearest neighbors from the training set memory bank using cosine
distance. Since the nearest neighbor is typically the same image in the memory bank, we analyze neighbors
#2 through #6. Results shown in Figure [[7] demonstrate how SynCo effectively clusters semantically similar
images after 200 and 800 epochs of pretraining. We observe that the retrieved neighbors share similar semantic
concepts, textures and object poses with the query image.

D Ablation Studies

In this section, we perform ablation studies of SynCo on ImageNet-100 and CIFAR-100. For ImageNet we use
a ResNet-50, while for CIFAR-100 we use a modified ResNet-18. We compare our method with the baseline
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Image Supervised  SynCo (200 ep.) SynCo (800 ep.) Image Supervised  SynCo (200 ep.) SynCo (800 ep.)

Figure 10: GradCAM visualizations of ImageNet validation set comparing different models: supervised
training and SynCo pretrained for 200 and 800 epochs.
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(a) 40 classes (b) 100 classes (c) 1000 classes

Figure 11: UMAP visualizations of features extracted from SynCo pretrained for 200 epochs. The visualizations
correspond to 40, 100, and 1000 classes of ImageNet validation set.

(a) 40 classes (b) 100 classes (c) 1000 classes

Figure 12: UMAP visualizations of features extracted from SynCo pretrained for 800 epochs. The visualizations
correspond to 40, 100, and 1000 classes of ImageNet validation set.

b
i

(a) 40 classes (b) 100 classes (c) 1000 classes

Figure 13: UMAP visualizations of features extracted from MoCo (He et al., 2020) pretrained for 200 epochs.
The visualizations correspond to 40, 100, and 1000 classes of ImageNet validation set.

of MoCo-v2, showing how SynCo improves performance through synthetic hard negatives. Our experiments
analyze the impact of different negative types, hyperparameter sensitivity, and queue size variations. We did
not search for the optimal combination of negative types, instead opting to ablate each type individually
and all together, as even without considering hyperparameters, testing all possible combinations of the 6
negative types would require evaluating 63 different configurations (28 — 1), which would be computationally
prohibitive.

D.1 Ablation Study on ImageNet-100

First, we perform ablations studies on ImageNet-100 for 100-way classification. Specifically, we ablate
SynCo’s hyperparameters o, d, 7, types (1 to 6), and the effect of queue size K to pretraining. The results of
our ablations are presented in Tables [14] to Our findings consistently demonstrate that various SynCo
configurations outperform the MoCo-v2 baseline.
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Figure 14: UMAP visualizations of features extracted from MoCo-v2 (Chen et al., 2020c) pretrained for 200
epochs. The visualizations correspond to 40, 100, and 1000 classes of ImageNet validation set.
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Figure 15: UMAP visualizations of features extracted from MoCo-v2 (Chen et al., 2020c) pretrained for 800
epochs. The visualizations correspond to 40, 100, and 1000 classes of ImageNet validation set.
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Figure 16: UMAP visualizations of features extracted from the supervised model. The plots show feature
distributions for 40, 100, and 1000 classes from the ImageNet validation set.

Ablation on hyperparameters. We conducted ablations on the parameters o, ¢, and 1 of SynCo’s type
4, type 5, and type 6 negatives, respectively. The results, presented in Table show that varying these
parameters does not lead to significant differences in performance. This suggests that SynCo is robust across
a wide range of values for o, §, 7.

Ablation on types. We evaluate the impact of each synthetic hard negative type on pretraining. For this,
we select the top N = 1024 hardest negatives and generate N; = 256, ¢ = 1,2,...,6 negatives. We train
SynCo without hard negatives (which is equivalent to MoCo-v2) for 100 epochs and measure top-1 and top-5
accuracy. Subsequently, we train using each type of hard negative individually, and then using all six types in
combination (which is equivelant to SynCo). The results of these ablations are presented in Table We see
that every SynCo configuration outperform the MoCo-v2 baseline.
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SynCo (200 ep.) SynCo (800 ep.)

[°F] : 1 (7] 1

Figure 17: Visualization of nearest neighbors in the embedding space for SynCo pretrained at 200 epochs
(left) and 800 epochs (right). Each row corresponds to a query image and its top-5 nearest neighbors in the
respective embedding spaces.
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Table 14: Top-1 and top-5 accuracies (in %) under linear evaluation on ImageNet-100 with 100 epochs of
pretraining using ResNet-50. We ablate different values of SynCo’s hyperparameters o, §, and 7.

Value Top-1 Top-5
0.01  48.20 74.26
o 005 48.36 73.84
0.10 4762 73.50
0.01  48.12 74.46
0 0.05 48.88 T74.72
0.10  48.04 73.72
0.01  48.06 74.00
n 005 47.16 74.14
0.10  47.76  74.06

Table 15: Top-1 and top-5 accuracies (in %) under linear evaluation on ImageNet-100 with 100 epochs of
pretraining using ResNet-50. We evaluate different types of hard negatives standalone (Type 1-6), MoCo-v2,
and SynCo that employs all types combined.

Method Top-1  Top-5
MoCo-v2 (Chen et all[2020¢) 47.74  73.90
Type 1 48.22  73.92
Type 2 48.46  74.10
Type 3 48.22  73.86
Type 4 48.20  74.26
Type 5 48.12  74.46
Type 6 48.06  74.00
SynCo (ours) 48.42 74.16

Ablation on queue size. We investigate the effect of queue size Q on performance. We train SynCo
and MoCo-v2 with reduced queue sizes. Our results, presented in Table reveal that SynCo performs
comparably to MoCo-v2 across various queue sizes. With smaller queues, SynCo underperforms compared to
MoCo-v2. This can be attributed to the fact that the total generated synthetic negatives are too hard for
the task and harm performance, a finding that is also observed in (Kalantidis et all 2020)). However, as the
queue increases, SynCo performs on par with MoCo-v2. At the largest queue size tested, SynCo outperforms
MoCo-v2.

Table 16: Top-1 accuracies (in %) under linear evaluation on ImageNet-100 with 100 epochs of pretraining
using ResNet-50. We ablate different queue sizes K comparing MoCo-v2 and SynCo.

Queue size K

Method 4 sk 16k 32k 65k 131k
MoCo-v2 (Chen et al.l 2020c) 50.10 50.50 49.32 48.02 47.74 47.60
SynCo (ours) 48.30 48.50 49.40 48.08 48.42 48.50

D.2 Ablation Study on CIFAR-100

Secondly, we perform additional ablation studies on CIFAR-100 (Krizhevskyl [2009) for 32 x 32 images for
100-way classification, chosen for its computational efficiency while maintaining sufficient complexity for
meaningful ablations. We ablate the same paramters as in Appendix [D.1] with the addition of N;, N, and
batch size. We use the same settings as previously discussed with the following differences. We adopt a
ResNet-18 (512 output units) (He et al., 2015) architecture without the final classification layer, replacing the
original 7 x 7 convolutional layer (convl) with a 3 x 3 convolution that has a stride of 1 and removing the
initial max pooling layer (maxpool). The batch size for CIFAR-100 is set to 256, using a single NVIDIA RTX
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6000 GPU, and the total training duration is set to 1,000 epochs. Unless stated otherwise, we use K = 16k.
We report both top-1 and top-5 accuracies as percentages on the test set. When training a linear classifier on
top of frozen features, we use a learning rate of 3.0.

Ablation on parameters. We evaluate the impact of the parameters o, §, and 17 on SynCo’s performance,
specifically focusing on type 4, type 5, and type 6 negatives. To determine the optimal settings, we empirically
test three sets of values for each parameter: 0.1,0.05,0.01. The results, illustrated in Figure indicate that
training SynCo with different values of these parameters yields similar performance across all configurations.
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(a) Ablation on o (b) Ablation on ¢ (c) Ablation on n

Figure 18: Top-1 accuracy on CIFAR-100, evaluated every 100 epochs over 1000 epochs of training with
varying parameter values. (a) Performance with different o values. (b) Performance with different § values.
(c) Performance with different n values.

Ablation on types. We evaluate SynCo by first training without hard negatives (equivalent to MoCo-v2)
and then by incorporating each type of hard negative individually, as well as in combination. Additionally,
we test different configurations of the number of hard negatives (N7 through Ng) to find the optimal settings.
The results in Figure [[9 show that any incorporation of hard negatives accelerates convergence and improves
top-1 accuracy, regardless of type. Increasing the total number of hard negatives beyond N = 1024 (e.g., to
N = 2048) does not further enhance performance, consistent with findings in MoCHI.
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Figure 19: Top-1 accuracy on CIFAR-100, evaluated every 100 epochs over 1000 epochs of training. (a)
Performance of SynCo with one type of hard negative at a time. (b) Performance of SynCo with varying
numbers of hard negatives N7 through Ng. Numbers in parentheses represent the maximum N chosen from
the queue Q. (¢) Comparison of SynCo without hard negatives (equivalent to MoCo-v2) and with all hard
negatives combined.

Ablation on queue size. We evaluate the performance of SynCo across various queue sizes. The results,
shown in Figure[20] compare the top-1 accuracy of SynCo and MoCo-v2 across these different queue sizes.
SynCo initially performs on par with MoCo-v2, with a minimal performance gap, suggesting that excessively
challenging negatives may initially hinder learning efficacy. As the queue size increases, both SynCo and
MoCo-v2 show comparable performance, converging further as the queue size maxes out.
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Figure 20: Top-1 accuracy on CIFAR-100, evaluated every 100 epochs over 1000 epochs of training, comparing
SynCo and MoCo-v2. (a) With queue size K = 1024. (b) With queue size K = 4096. (c¢) With queue size
K =8192. (d) With queue size K = 16384. (e) With queue size K = 32768. (f) With queue size K = 65536.

Ablation on batch size.

We evaluate the effect of varying batch sizes on the performance of SynCo. We

tested batch sizes of 64,128,256, 512, 1024, and 4096. The results are shown in Figure 21} SynCo consistently
outperforms MoCo-v2 across all batch sizes, even at the smallest batch size of 64. However, larger batch sizes

generally lead to degraded performance for both methods, likely due to the dilution of gradient signals when
averaging over larger batches.
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Figure 21: Top-1 accuracy on CIFAR-100, evaluated every 100 epochs over 1000 epochs of training, comparing
SynCo with MoCo-v2. (a) With batch size of 64. (b) With batch size of 128. (¢) With batch size of 256. (d)
With batch size of 512. (e) With batch size of 1024. (f) With batch size of 2048.
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E Extended Related Work

This section extends our related work discussion by examining two complementary approaches in self-
supervised learning, i.e., synthetic feature generation, which enhances model performance with limited labeled
data, and generative self-supervised methods, particularly Masked Image Modeling (MIM), which learn by
reconstructing or predicting parts of input data.

E.1 Synthetic Features

Synthetic feature generation is a widely used method to enhance deep learning models, especially with
limited labeled data. Adding synthetic features to the representation space improves model generalization
and performance. Some methods generate features for unseen classes using generative models (Hariharan &
Girshick, [2017; [Xian et al., |2018; [Schonfeld et all [2019)), while others integrate these into self-supervised and
contrastive learning frameworks (Li et al., [2021b; [Zhang et al.,|2021). This approach has shown success in
zero-shot learning (Han et al., [2021). In contrast, our approach directly generates synthetic hard negatives in
contrastive learning, without requiring additional generative models.

E.2 Generative Self-supervised Learning

While the previously discussed methods are discriminative approaches that learn by comparing and dis-
tinguishing between different views or instances, another major branch of self-supervised learning takes a
generative approach. Generative methods learn by reconstructing or predicting parts of the input data,
with MIM emerging as a particularly successful strategy. iGPT (Chen et al., |2020a)) demonstrated early
success by treating images as sequences for autoregressive prediction, followed by BEIT (Bao et al.l 2022)
and BEiT-v2 (Peng et all 2022)) which adapted BERT-style (Devlin et al.l [2018) masked prediction to vision.
MAE (He et all, 2021)) showed that aggressive masking of image patches (up to 75%) creates an effective
self-supervised task, while SImMIM (Xie et al., |2022) simplified the approach with a lightweight prediction
head. Various improvements followed: MaskFeat (Wei et al., |2023) predicted HOG features instead of pixels,
Context Autoencoder (Chen et al., |2023) leveraged contextual information, and MSN (Assran et al., [2022)
combined masking with siamese networks. Recent work has focused on efficiency and effectiveness through
approaches like SiamMAE (Gupta et al., 2023), MixMAE (Liu et al,|2023al), PixMIM (Liu et al., [2023b)), and
TinyMIM (Ren et all [2023). The latest developments include CropMAE (Eymaél et al., [2024) with efficient
siamese cropped autoencoders and ColorMAE (Hinojosa et al., [2024) exploring data-independent masking
strategies. These generative approaches differ fundamentally from discriminative methods by learning to
predict or reconstruct missing information rather than comparing different views or instances, offering a
complementary approach to self-supervised visual learning.

F Discussion

In this section, we examine several critical aspects of our work: the rationale behind comparing with MoCo-
based approaches rather than other self-supervised methods; the underlying mechanisms of each synthetic
hard negative type and their contribution to model generalization; SynCo’s role in model regularization
and optimization strategies; the broader implications for other domains like text and audio; connections to
classical self-supervised learning foundations; limitations in our hyperparameter analysis due to computational
constraints; potential extensions to stronger frameworks like Vision Transformers and larger architectures;
and possible adaptations to SimCLR’s in-batch negative sampling approach. Through this comprehensive
discussion, we aim to provide deeper insights into SynCo’s effectiveness, limitations, and future research
directions while contextualizing our contributions within the broader landscape of self-supervised learning.

On the fairness of comparisons. Methods such as BYOL (Grill et al., [2020)), BT (Zbontar et al., [2021)),
SwAV (Caron et al., 2020), and VICRegL. (Bardes et al., 2022a)) incorporate additional tricks, including larger
projection heads, multi-crop augmentation, and longer training, which significantly improve their performance.
However, these improvements stem from architectural and training modifications rather than solely from their
core learning mechanisms. In contrast, our approach focuses on demonstrating the effectiveness of synthetic
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negative generation within a simpler framework, without relying on such tricks. Therefore, a fair comparison
should be made against MoCo-based approaches (MoCo-v2 (Chen et al., 2020c)), MoCHI (Kalantidis et al.,
2020), PCL (Li et al. [2021a)), DCL (Yeh et al.,2022)), which share similar architectural choices and training
procedures, ensuring an equitable evaluation of our contributions.

Intuition of synthetic hard negatives. FEach SynCo strategy improves model generalization through
challenging contrasts. Type 1 interpolates between query and hard negatives, increasing sample diversity
throughout training. Type 2 extrapolates beyond the query, pushing representation space boundaries and
improving robustness to difficult contrasts. Type 3 combines pairs of hard negatives, encouraging more
generalized and robust feature learning. Type 4 injects Gaussian noise, promoting invariance to minor
feature fluctuations and enhancing generalization. Type 5 modifies embeddings based on similarity gradients,
refining discriminatory power by directing the model towards harder negatives. Type 6 applies adversarial
perturbations, creating the most challenging contrasts to distinguish deceptively similar samples.

Using hard negatives for model regularization. SynCo addresses existing limitations by generating
hard negatives on-the-fly, reducing computational overhead while maintaining diverse contrasts. It regularizes
the network through synthetic hard negatives, aligning with vicinal risk minimization (Chapelle et al., 2000).
This encourages learning robust features over memorization, addressing poor generalization common in
empirical risk minimization (Vapnikl 1998;|Zhang et al. |2017al). The diverse synthetic negatives create a
comprehensive learning environment, improving generalization across datasets and tasks. This approach
reduces overfitting and enhances robustness to data variations, leading to more robust representations (Zhang
et al.l [2017a)).

Considerations for parameter tuning and optimal use of synthetic negatives. In our experiments,
we searched for optimal parameters for each type of synthetic negative. We used all types of synthetic
negatives to demonstrate overall improvements. However, incorporating fewer synthetic negatives, rather
than all, could potentially lead to higher accuracy. Here, our focus was on proposing the concept of synthetic
negatives rather than searching for the optimal combination. The optimal combination of synthetic negatives
depends on the specific dataset and task. We also did not exhaustively search for the most effective number
of synthetic negatives to generate. Instead, we conducted initial experiments to assess their effectiveness.

Implications of synthetic hard negatives in broader contexts. The introduction of synthetic hard
negatives in contrastive learning not only improves model performance in traditional image classification and
detection tasks but also holds potential for applications beyond the current scope. Synthetic hard negatives
can be adapted for various modalities, including text, audio, and multi-modal learning environments. For
instance, in natural language processing, generating challenging negative samples could enhance tasks such as
sentence similarity, text classification, and language translation. Similarly, in audio processing, synthetic hard
negatives might improve tasks like speaker recognition or audio event detection. Moreover, the adaptability
of synthetic hard negatives opens up possibilities for future research into domain adaptation and transfer
learning. By incorporating domain-specific hard negatives, models can better generalize across different
domains, addressing the challenge of domain shift in practical applications. This adaptability also suggests
that synthetic hard negatives could be a crucial component in developing more robust, generalizable machine
learning systems across various fields.

Bridging classical and modern self-supervised learning. While many of the foundational works in self-
supervised learning date back several years, the principles and challenges they address remain fundamentally
relevant. Our work demonstrates how these established frameworks can be improved through synthetic hard
negative generation. This approach bridges classical self-supervised learning techniques with contemporary
needs for more efficient and robust representation learning. The method’s success in improving performance
across various tasks suggests that self-supervised learning, particularly when augmented with synthetic
samples in the embedding space, continues to offer valuable directions for advancing Al systems. As the field
moves toward more efficient and generalizable learning approaches, techniques that can work with limited
labeled data while maintaining strong performance become increasingly important.
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Limitations on hyperparameter analysis. While our experiments demonstrate SynCo’s effectiveness
across various configurations, our comprehensive hyperparameter analysis is primarily based on CIFAR-100,
with findings extended to ImageNet. Due to computational constraints, we cannot exhaustively ablate these
parameters on larger datasets. Nevertheless, our results show that SynCo is remarkably robust to variations
in hyperparameters (o, §, 77) and the number of synthetic negatives (IV;, V). This versatility suggests that
even without dataset-specific optimization, SynCo can achieve strong performance with default parameters.
Future work could explore more fine-grained parameter tuning for specific datasets and domains.

Potential extensions using stronger frameworks. While our current implementation is built on
MoCo-v2 (Chen et al., [2020c) for computational efficiency (requiring only 4 GPUs), SynCo’s principles
could be integrated with more advanced frameworks. Using larger projection and prediction (Grill et al.l
2020)), incorporating multi-crop augmentation (Caron et al, 2020)), or leveraging advanced architectures (Xie
et al., [2021b)) could potentially boost performance further. The method could also be extended to Vision
Transformers (Xie et al., |2021b} (Chen et al. |2021). However, these advanced frameworks typically require
significant computational resources (> 8 GPUs), making them currently impractical for our experimental
validation. Future work could explore these extensions when more computational resources are available.

Potential extension to SimCLR. While our method is built upon MoCo-v2 (Chen et al.; [2020c)’s
memory bank, the concept of synthetic hard negatives could be adapted to SimCLR (Chen et all 2020b))’s
in-batch negative sampling approach. Instead of generating synthetic negatives from memory bank features,
one could generate them from in-batch features. However, SimCLR typically requires very large batch
sizes (4096) and significant GPU resources (8+ GPUs) to achieve competitive performance, making such
an implementation computationally prohibitive for our current experimental validation. This remains an
interesting direction for future research.

G Checkpoint Availability

The pre-trained model checkpoints for models trained on the ImageNet ILSVRC-2012 dataset are available
for download: 200-epoch modell (top-1 linear evaluation accuracy 68.1%) and 800-epoch model (top-1 linear
evaluation accuracy 70.7%).

H Broader Impact

The presented research should be categorized as research in the field of unsupervised learning. This work may
inspire new algorithms, theoretical, and experimental investigation. The algorithm presented here can be
used for many different vision applications and a particular use may have both positive or negative impacts,
which is known as the dual use problem. Besides, as vision datasets could be biased, the representation
learned by SynCo could be susceptible to replicate these biases.
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Figure 22: t-SNE visualization of ImageNet class embeddings in SynCo’s feature space. Each point represents
the average feature vector of validation set images for one class. The visualization reveals semantic clustering,
with similar concepts appearing close together. SynCo is pretrained for 200 epochs.
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Figure 23: t-SNE visualization of ImageNet class embeddings in SynCo’s feature space after 800 epochs of
pretraining. Each point represents the average feature vector of validation set images for one class.
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Figure 24: t-SNE visualization of ImageNet class embeddings in MoCo’s (He et al., 2020) feature space after
200 epochs of pretraining. Each point represents the average feature vector of validation set images for one
class.
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Figure 25: t-SNE visualization of ImageNet class embeddings in MoCo-v2’s (Chen et al., [2020c) feature space
after 200 epochs of pretraining. Each point represents the average feature vector of validation set images for
one class.
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Figure 26: t-SNE visualization of ImageNet class embeddings in MoCo-v2’s (Chen et al., [2020c) feature space
after 800 epochs of pretraining. Each point represents the average feature vector of validation set images for
one class.
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Figure 27: t-SNE visualization of ImageNet class embeddings in the supervised feature space. Each point
corresponds to the mean feature vector of validation images belonging to a single class.
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